Q-n 11 is 10 pt and $3 / 3 / 4$
11.
a. 07 .
b. $.15+.10+.05=.30$.
c. Let $A=$ the selected individual owns shares in a stock fund. Then $P(A)=.18+.25=.43$. The desired probability, that a selected customer does not shares in a stock fund, equals $P\left(A^{\prime}\right)=1-P(A)=1-.43$ $=.57$. This could also be calculated by adding the probabilities for all the funds that are not stocks.

Q-n 12 is 10 pt and $2 / 2 / 2 / 2 / 2$
12.
a. No, this is not possible. Since event $A \square B$ is contained within event B, it must be the case that $P(A \cap B) \leq P(B)$. However, $.5>4$.
b. By the addition rule, $P(A \cup B)=.5+.4-.3=.6$.
c. $\quad P($ neither A nor $B)=P\left(A^{\prime} \cap B^{\prime}\right)=P\left((A \cup B)^{\prime}\right)=1-P(A \cup B)=1-.6=4$.
d. The event of interest is $A \cap B^{\prime}$; from a Venn diagram, we see $P\left(A \cap B^{\prime}\right)=P(A)-P(A \cap B)=.5-.3=$. 2.
e. From a Venn diagram, we see that the probability of interest is $P($ exactly one $)=P($ at least one $)$ $P($ both $)=P(A \cup B)-P(A \cap B)=.6-.3=.3$.

Q-n 29 is 10 pt and $2 / 2 / 3 / 3$
29.
a. There are 26 letters, so allowing repeats there are $(26)(26)=(26)^{2}=676$ possible 2 -letter domain names. Add in the 10 digits, and there are 36 characters available, so allowing repeats there are $(36)(36)=(36)^{2}=1296$ possible 2 -character domain names.
b. By the same logic as part a, the answers are $(26)^{3}=17,576$ and $(36)^{3}=46,656$.
c. Continuing, $(26)^{4}=456,976 ;(36)^{4}=1,679,616$.
d. $\quad P(4$-character sequence is already owned $)=1-P(4$-character sequence still available $)=1-$ $97,786 /(36)^{4}=.942$.

Q-n 30 is 10 pt and 2/2/2/2/2
30.
a. Because order is important, we'll use $P_{3,8}=(8)(7)(6)=336$.
b. Order doesn't matter here, so we use $\binom{30}{6}=593,775$.
c. The number of ways to choose 2 zinfandels from the 8 available is $\binom{8}{2}$. Similarly, the number of ways to choose the merlots and cabernets are $\binom{10}{2}$ and $\binom{12}{2}$, respectively. Hence, the total number of options (using the Fundamental Counting Principle) equals $\binom{8}{2}\binom{10}{2}\binom{12}{2}=(28)(45)(66)=83,160$.
d. The numerator comes from part \mathbf{c} and the denominator from part $\mathbf{b}: \frac{83,160}{593,775}=.140$.
e. We use the same denominator as in part d. The number of ways to choose all zinfandel is $\binom{8}{6}$, with similar answers for all merlot and all cabernet. Since these are disjoint events, $P($ all same $)=P($ all zin $)+$ $P($ all merlot $)+P($ all cab $)=\frac{\binom{8}{6}+\binom{10}{6}+\binom{12}{6}}{\binom{30}{6}}=\frac{1162}{593,775}=.002$.

Q-n 47 is 10 pt and 2/2/2/2/2
47.
a. Apply the addition rule for three events: $P(A \cup B \cup C)=.6+.4+.2-.3-.15-.1+.08=.73$.
b. $\quad P\left(A \cap B \cap C^{\prime}\right)=P(A \cap B)-P(A \cap B \cap C)=.3-.08=.22$.
c. $\quad P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{.3}{.6}=.50$ and $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{.3}{.4}=.75$. Half of students with Visa cards also have a MasterCard, while three-quarters of students with a MasterCard also have a Visa card.
d. $\quad P(A \cap B \mid C)=\frac{P([A \cap B] \cap C)}{P(C)}=\frac{P(A \cap B \cap C)}{P(C)}=\frac{.08}{.2}=.40$.
e. $P(A \cup B \mid C)=\frac{P([A \cup B] \cap C)}{P(C)}=\frac{P([A \cap C] \cup[B \cap C])}{P(C)}$. Use a distributive law:
$=\frac{P(A \cap C)+P(B \cap C)-P([A \cap C] \cap[B \cap C])}{P(C)}=\frac{P(A \cap C)+P(B \cap C)-P(A \cap B \cap C)}{P(C)}=$ $\frac{.15+.1-.08}{2}=.85$.

